
AGILE ARCHITECTURE 
How Worse Can Be Better

Mina Boström Nakićenović

ABOUT ME

My children My husband

Me

Thanks to him!

REFERENCES

MY FAVORITE REFERENCE

[13] R. Gabriel: Worse is Better

RICHARD GABRIEL
www.dreamsongs.com

http://www.dreamsongs.com

My Model-Driven
Development Story

Company A (2001)

MODEL-DRIVEN DEVELOPMENT (MDD)

Platform Specific Models
PSM

Platform Independent Models
PIM

describes

Implementation details Generated code

transformations transformations

code generators

Meta Model

Model(s)

DATABASE DRIVEN WEB/MOBILE APPLICATION

HTML Mobil app

EJB executed on JBoss

Servlet executed on Tomcat web server

SQL DDL Schema

XML tree

XML tree

XSL transformation for XML tree objects
(Cocoon servlet for XSL transformation)

Java Script

Database Layer!
Oracle

XML tree

User Interface Layer

Interaction Layer

Business Object Layer (XML format)!
SQL (view) on Entity Layer!
(select * from db) !

Entity Layer Model (XMI with UML profile)!
!
!

Application Object Layer!
BusinessObject (BO) + methods BO

COMPANY A - SUMMARY

• Pair-programming

• While we were waiting on customers, we were constantly building our
framework, trying to think from the customer’s point of view.

• 6 Layers Architecture => a strong Separation of Concerns (SoC)
• Model-Driven Development + SoC => ”Build for change” (Embrace change)
• We used very sophisticated tools and very sophisticated models, so that

they can reflect the realities of various deployment platform. If the
architecture is flexible, it will be attractive for many customers.

• Almost 100% JUnit test coverage within each layer
• Application developers need to know just Java Script (Simplicity)

But

• It was very complicated to implement even simple functions/queries
• Framework was never stable enough

• Framework developers worked separated from application developers

• Only one test-field customer using our framework to run a simple application

Company B (2003)

Financial Back-office System

!
Business Object Model (XML format)Business Logic Layer

Application Layer

DB Schema

XML tree

Microsoft SQL

GUI (Power Builder)

EJB executed on JBoss

XML tree

COMPANY B - SUMMARY

• No customers, we were building the framework/applications 2 years

• 3 Layers Architecture => a good SoC

• Model-Driven Development + SoC => ”Build for change” (Embrace change)

• We used advanced tools and models

• Almost 100% JUnit test coverage within each layer

But
• It was very complicated to implement even simple functions/queries
• Framework was never stable enough

• Framework developers worked separated from application developers

MODEL-DRIVEN DEVELOPMENT - CONCLUSION

It cannot succeed since:

”The difference between the theory and the
practice is much greater in practice then in theory”

•It assumes a big upfront design

•Starting curve is usually too long
 It takes a long time before getting a Return Of Investment (ROI)

•It always becomes too complex and cannot be stable

•MDD idea - theoretically good, inapplicable in practice

SUNGARD  
Front Arena

SUNGARD FRONT ARENA

Market access
• based on a client/server architecture

Sungard
• large, world-wide financial services software company
• 25 000 customers in 70 countries.

Front Arena (FA) system
• order management and deal capture on electronic exchanges

SYSTEM ARCHITECTURE

Transaction Network Protocol - TNP
• An internal financial message protocol for transaction handling
 It is built on top of TCP/IP
• Used for the clients/servers components communication

TNP PROTOCOL MESSAGE DEFINITIONS

TNP message definitions have only C++ format
!
Components that use the TNP protocol:

• implemented in different programming languages (C++, Java, C#)
• must use the same TNP message definition.

!
The same definition is defined in different C++ files:

• none contained the complete definition
• some information was duplicated.

!
Architecture had several critical problems:

• An unnecessary duplication of the data definition (risk for data inconsistency)
• A programming language dependency (one of the definition files was a C++ file)

definition files

C++ format

C# components

C++ components

Java components

Linux

Platforms

Windows

MANAGEMENT LIMITATIONS

• Short time-frame
• No investment in change management
• Only already used or open-source tools

NEW ARCHITECTURE - ATTRIBUTE DRIVEN DESIGN

Quality Attributes
•Modifiability
•Usability
•Interoperability
•Reusability
•Efficiency

Architectural Drivers
•Centralization
•Data consistency
•Programming language
independency
•Presentation

TNP Message definitions
•There are more then 1000 TNP messages defined
•Message definitions updates frequently, on the daily basis
•All developing teams are updating it

ARCHITECTURAL DECISION

Edvard Munch ”Scream”

ANALYZING FAILED MDD ARCHITECTURES

• Starting curve was too long
 We have never achieved to reach production and get a ROI
!
•We had a lot of waste
 We built complex architectures, although most parts of them were
never used.
!
•We built for future
 We were focused on creating perfect technical solutions, believing
that they can ”embrace change” i.e. that it can provide an
architecture which is easy to change.

SOFTWARE ARCHITECTURE DEFINITION

Philippe Kruchten, Grady Booch

Len Bass, Paul Clements, Rick Kazman

International Association of Software Architects (IASA)

CAN MDD BE AGILE AND LEAN ?

What is a heart of the MDD?
•Accelerated development, achieved by the centralized architecture and automatic
generations.
•Separations of concerns both on technical and business aspects, making the system
architecture flexible for the changes.

What are the main goals of the Agile and Lean principles?
•To develop qualitative and no cost-effective solutions and deliver them quickly
•Welcome changing requirements even late in the project
(”decide in the last responsible moment”)
•Deliver business value
•Eliminate waste
•See the whole

Both address the same goals:
• Making systems less sensitive to frequent changes
• Accelerated development
• Eliminating wastes

Implementation
details

MetaModel

PSM

PIM

APPLYING AGILE AND LEAN PRINCIPLES

definition files

C++ format transformations

reverse
engineering

• Eliminate waste

• Organizational maturity

•No PIM and PSM
One model with entangled platform specific
information

•XML format is good enough
A tradeoff between XML simplicity and UML’s
abstraction benefits

•Code generators - XSL transformations
Common standard for C++, Java, .NET developers

• Simplicity is essential

• Don’t build for tomorrow

• Collective code ownership

Model

Code
generators

WHAT DID WE GET?

is achieved, not when there is nothing more

to add, but when there is nothing left to take away.”

Antoine de Saint-Exupery

“Perfection

”Good developers add values and remove code”, Thomas Riha

HOW TO PRODUCE THE ARCHITECTURE?

• To build the right product
• To build the product in a right way

HOW TO PRODUCE THE ARCHITECTURE?

definitions files

reverse engineering
Model

• Model first? There is a risk that we specify things which will never be used - waste!

• Reverse the existing data first? But we cannot proceed without the model design.

• Forward engineering (code generation) first? But we cannot proceed without the model design.

• Do all three activities within the same sprint! Set a spike for each round-trip scenario.

reverse some data

design the model
for the reversed data

produce code generators
for the modeled data

compare the generated code
with the original code

adjust, refactor…

Code generators

LEAN STARTUP METHODOLOGY (ERIC RIES)

6

Minimum Viable Product (MVP)
Version of a new product which allows a team to collect the maximum amount of
validated learning about customers with the least effort.
MVP is a bare-bones product that includes just enough features to allow useful
feedback from early adopters.

Build-Measure-Learn Loop
Build a feature, measure whether it delivers, learn from the results

AGILE AND LEAN MODEL-DRIVEN DEVELOPMENT

• We modeled just what we needed, according to the input from the
definition files. Hence the model was ”pulled by the request” and a
”potential waste was not introduced”.

 ”All businesses have costs. Waste is optional”, Stephen Parry

• After one spike/round tripping we learnt how to improve things for the next
cycle. ”Learn first”

• Consequently, MDD’s long starting curve was shortened. We produced a
piece of working software in each first sprint. ”Working software is a
primary measure of progress”

• We could see, early in the project, which parts of the MDD had to be
improved. ”Build quality in”, ”Improve constantly”

• We generalized model only for the repeating artifacts. We did not put any
effort to model things that appeared just once. We ”did not build for
tomorrow”.

OUR AGILE OR ”GOOD-ENOUGH” MODEL

C++ memory location?!

MVP CONCEPT

“Bugs were all over the place,
extremely ugly looking, and only the
most rudimentary features. While I
used to enjoy showing my family
what I’d built, I remember thinking: I
never want my family to know I’ve
released this pitiful of a product.

Eric Ries

But it allowed us to test the market
and get feedback, which allowed
us to drop certain features that
didn’t resonate with our audience,
and focus on others that our
customers really liked.”

AFTER SEVERAL BUILD-MEASURE-LOOP CYCLES

WHY DID WE SUCCED THE THIRD TIME?

4

• By accident?

• Third time lucky?

• Because WORSE IS BETTER?

”GOOD-ENOUGH” SOLUTIONS (Scott Ambler)

”Just barely good-enough” solution, where the fundamental
challenge with ”just barely good-enough” is situational and therefore
the most efficient. Hence such solutions usually create a biggest
business value.

”GOOD-ENOUGH” SOLUTIONS

GOOD ENOUGH

A ”HELLO WORLD” PROGRAM

”IS WORSE BETTER?”

It is (often)!

What do you
think?

R. Gabriel

Mina

