AGILE ARCHITECTURE
How Worse Can Be Better

Mina Bostrom Naki¢enovié¢

ABOUT ME

) i} i
- : b
|)
1 $
3 g
y i

J

Thanks to him!

L4

B

: s
v B
| :
|

" g
i f
3 4
1 4
- i :

.I\/thusband

My childrén

REFERENCES

Principles behind the Agile Manifesto

Desian p
(/Slgn P aﬂﬂ’ng We follow these principles:
Elements of Reusable
Object-Oriengad Soflware
:{m}h Gammia

Ichard Helm B
R:]hlph llohnson o Welcome changing requirements, even late in
John Vilissides - Z development. Agile processes harness change for

the customer's competitive advantage.

Our highest priority is to satisfy the customer
through early and continuous delivery
of valuable software.

Deliver working software frequently, from a
couple of weeks to a couple of months, with a
preference to the shorter timescale.

Business people and developers must work
together daily throughout the project.

Build projects around motivated individuals.
(vive them the envirnnment and annnart thev need

- MY FAVORITE REFERENCE

although the MDA phiosophy might be the nght
solution for the sysmem” Instead of feelng as
Proust’s character Swan, whe said: “Tve wasted the
best years of my Me being i love with 2 woman,
who wamnt even my type” [20] the best vears of the
architect's hife should mot be wasted n trying to
apply the full scale mudnmodel MDA of 2 &
unacceptable for the organization Through the
appication of agle prnncgples a prapmatic MDD
appeoach could be produced and used mutead The
pragmatic MDD approach relaxes the
recosumendatons defined by the OMG's standards
In ouwr casestudy the MDA's ponciples were
simplified by mergng the PIM and PSMs to one
model expressed in 3 cuntom XML Salect In thes
way the MDD became less abstract, smpler and
appbcable in owr cegarmzation. The &awback of owr
MDD appeoach was that the standard MDA tocls
couldn't be used and our own tools had to be
developed mnstead But comudering the short time
needed for developmg our tools, this was a pnce
woth paving Although mamtenance of our tecl o
required, it i a continuous process done in steps, 5o
that the long MDA staming curve is siopped Owr
approach mtroduced the MDD m a stepwise wav, 10
1 could fit within the short time-frame gven for the
preject. A rough estimmate of the tene spest for tha
preject is 200 developer howrs spread out on a
calendar penod of 6 months By wing aple
prnciples the beaming curve and introduction gap of
MDD methods and tools were avouded.

8. References
(1) StmGaed wow sungard coe
[2) TNP SDK documenmtion: SunGard Froat Arena

[3] Lea Bass, Pad Clemest, Rxk Kamnm: Software
Architecture m Practice. Addiscn Wesley, 203

[4] Jsmes McGovern, Scoft Ambler, Machael Swvess: A
peaccal {\ndc % Esterpnse Architecture. Prentice Hall
PTR, 2003

(5] Jem Benvm: Object 1o Model parsdigm change mih
te O.C?C-MDA e,
bap rannrod edds fr cows nda 05 Dearva ppt

[6) MDA, wew omg org mda
[7) AgieMimaboto, waw sgdanmifonts org

[8)Stockbrarger,
www paychstat musoventite sdu mrobook shiddm e,

(6] Rea Jeffess, Ame Anderson, Che Hesdnckson
ExvemeProgrameny Adduce Wesley, 2001

[10] GOC-XML, www geoxml org HTML lndex bl

[11] Ray Caroll Clare Faby, Elyes Lebshet Sven v
der Meer, Neltanos CGeorgalas, Davd Cleary: Applymg
e P2P paradipm 1o managesent of large-seale datnbuted
peowerks wag Modd Drnves Appeesch, Netweek

¢ md Maageomt Symposram, 2006, NOMS
204, 10 IEEETFIP Voluse lsue , 37 Apnl 206
Pagels)1 < 14 |

[12] Ampeke Kleppe Jos Wamd

a5 | [13] R, Gabriel: Worse is Better

‘ili]?. Gated W«uuﬂmj '|
[14] § J. Mallor, Kendall “'-v-J
Wese MDA Dutlled. Procples of Modddves :

achctize. Addmos Wealey, 2004

(15) Davsd §. Framke: Modd Drwem Archascme -
Applyaig MDA 10 Emerpenie Compenng. Wiley, 2005

(16) Asdrew Humt Davsd Thomuas: The Pragmane
peograemer. Adduos Wesley, 2000

[17] Swefan Tdkev: A crmque of Fowlers MDA cntique,
www mooq com blog 12005023 aqoe_of fouln =
da_cnt html

(18] Jea Kem: Pragmase MDA = 3 keys » software
drvelopment 1ucoess,
www glsecorg files Kem Jou GLSEC PragmuncMDA p
M

[19] Bran Seic: Reflacion ca 30+ years 8 2 software

Geveloper, Sofwaze Educanon & T
13% Coafermce ca, 18.20 Aprll NOS, Page(s):5 - §

[20] Bem Sebse: The Pragmanes of Modd.Dewes
Development, [EEE Software, Vel 20 (5) 2003

[21] Marel Prowst A s secherche du tereps perdu = Us
mows & Swm. Padea 2007

RICHARD GABRIEL
www.dreamsongs.com

"_I_\{prse Is Better” | | 1990
"Worse Is Better |s Worse” 1 991

I w. %
“Is Worse Really Better?” - 1992 =

"Back to the Future: Is Worse (Still) Better?”2000

”Bgck to the Future: Worse (Still) Is Better” 2001

.......

T : e R T

e Smmmmmm S

http://www.dreamsongs.com

My Model-Driven
Development Story

Company A (2001)

MODEL-DRIVEN DEVELOPMENT (MDD)

transformations transformations
Model(s) Platform Independent Models Platform Specific Models
PIM | | - PSM

describes code generators

Meta Model Implementation details Generated code

DATABASE DRIVEN WEB/MOBILE APPLICATION

HTML

Interaction Laye

Java Script Bué,inessObject (BO)+‘meth°dS

r

Mobil app

XML tree |

XML tree

XML tree

Business Object Layer (XML format)
SQL (view) on Entity Layer

(select * from db)

Entity Laver M

del

(XMI with UML profile)

Database Layer
Oracle

SQL DDL Schema

XSL transformation for XML tree object:
(Cocoon servlet for XSL transformation)

Servilet executed on Tomcat web server

EJB executed on JBoss

COMPANY A - SUMMARY

* 6 Layers Architecture => a strong Separation of Concerns (SoC)
* Model-Driven Development + SoC => "Build for change” (Embrace change)

e \WWe used very sophisticated tools and very sophisticated models, so that
they can reflect the realities of various deployment plattorm. If the
architecture is flexible, it will be attractive for many customers.

e Application developers need to know just Java Script (Simplicity)

e Almost 100% JUnit test coverage within each layer
® Pair-programming

But
 Framework was never stable enough

* |t was very complicated to implement even simple functions/queries

* Framework developers worked separated from application developers

e Only one test-field customer using our framework to run a simple application

e While we were waiting on customers, we were constantly building our
framework, trying to think from the customer’s point of view.

Company B (2003)

Financial Back-office System

GUI (Power Builder)
XML tree
Application Layer

XML tree

Business Logic Layer

DB Schema

Microsoft SQL

EJB executed on JBoss

Business Object Model (XML format)

COMPANY B - SUMMARY

e 3 Layers Architecture => a good SoC
* Model-Driven Development + SoC => "Build for change” (Embrace change)

e \\Ve used advanced tools and models

e Almost 100% JUnit test coverage within each layer

But
e It was very complicated to implement even simple functions/queries

* Framework was never stable enough

* Framework developers worked separated from application developers

« No customers, we were building the framework/applications 2 years

MODEL-DRIVEN DEVELOPMENT - CONCLUSION

It cannot succeed since:

o|t assumes a big upfront design

oStarting curve is usually too long
It takes a long time before getting a Return Of Investment (ROI)

olt always becomes too complex and cannot be stable

«MDD idea - theoretically good, inapplicable in practice

“The difference between the theory and the
practice is much greater in practice then in theory”

Model-Driven Development - Never again!!!
1 ey : RS S T

—
-

SUNGARD
Front Arena

SUNGARD FRONT ARENA

ﬁungard
o« large, world-wide financial services software company
e 25000 customers in 70 countries.

#Front Arena (FA) system
. order management and deal capture on electronic exchan997

Market access

e based on a client/server architecture | | l

SYSTEM ARCHITECTURE

internetclients | SOFTBROKER AWT based
Java client Web client

AMS ™\

swoysds fued ¢

swaysds fued .8

«price feeds

directmarket directinformation
connections

Exchanges, markets, networks, ECNs, or brokers

Information distribution platforms

Transaction Network Protocol - TNP
e ‘An internal financial message protocol for transaction handling

It is built on top of TCP/IP
o Used for the clients/servers components communication

TNP PROTOCOL MESSAGE DEFINITIONS

TNP message definitions have only C++ format

Components that use the TNP protocol:
e implemented in different programming languages (C++, Java, C#)
e must use the same TNP message definition.

The same definition is defined in different C++ files:
e none contained the complete definition
e some information was duplicated.

Architecture had several critical problems:
e An unnecessary duplication of the data definition (risk for data inconsistency)
e A programming language dependency (one of the definition files was a C++ file)

Windows

C++ format C++ components

Linux

! e —— ———

Platforms
definition files

Java components C# components

MANAGEMENT LIMITATIONS

~ Short time-frame
« No investment in change management
o Only already used or open-source tools

WIIl take time
to dellver

;7 dreaming

| Not the CHEAP

pest quality

NEW ARCHITECTURE - ATTRIBUTE DRIVEN DESIGN

TNP Message definitions

e There are more then 1000 TNP messages defined
«Message definitions updates frequently, on the daily basis

« All developing teams are updating it

Quality Attributes
« Modifiability

« Usability

o Interoperability

e Reusability

o Efficiency

Architectural Drivers

« Centralization

e Data consistency

«Programming language
independency

e Presentation

............

...........

ARCHITECTURAL DECISION

MDD is the most suitable solution for our problem
R A ——— e Mﬁ,;

But haven't | said: “MDD never again”?!?! |

Edvard Munch ”Scream”

ANALYZING FAILED MDD ARCHITECTURES

« Starting curve was too long
We have never achieved to reach production and get a ROI

«We had a lot of waste
We built complex architectures, although most parts of them were
never used.

«We built for future

We were focused on creating perfect technical solutions, believing
that they can "embrace change” i.e. that it can provide an
architecture which is easy to change.

SOFTWARE ARCHITECTURE DEFINITION

1. The software architecture of a program or computing system is the structure or
structures of the system, which comprise software elements, the externally visible

propertles of those elements, and the relationships among them.
W ‘—-w
Philippe Kruchten, Grady Booch

2. Software architecture is the art and science of designing and delivering valuable
technology strategy.

" International Association of Software Architects (IASA)

3. Software architecture encompasses the set of significant decisions about the
organization of a software system including the selection of the structural elements
and their interfaces by which the system is composed; behavior as specified in
collaboration among those elements; composition of these structural and
behavioral elements into larger subsystems; and an architectural style that guides
this organization.

T e et e e T
. . . Len Bass, Paul Clements, Rick Kazman

CAN MDD BE AGILE AND LEAN ? V;{)

"MDD is a such big design upfront and how can it be agile 7r

What is a heart of the MDD?

e Accelerated development, achieved by the centralized architecture and automatic
generations.

«Separations of concerns both on technical and business aspects, making the system
architecture flexible for the changes.

What are the main goals of the Agile and Lean principles?

« To develop qualitative and no cost-effective solutions and deliver them quickly
«\Welcome changing requirements even late in the project

(“"decide in the last responsible moment”)

«Deliver business value

«Eliminate waste

«See the whole

Both address the same goals:

* Making systems less sensitive to frequent changes
* Accelerated development

* Eliminating wastes

APPLYING AGILE AND LEAN PRINCIPLES

reverse _Model
engineering
PIM >< MetaModel
C++ format | transf%tions
PSM
definition files
eNo PIM and PSM S -
One model with entangled platform specific Code IMPpIiCity Is essen lﬂa
information generators e -
e Eliminate waste

B

XML format is good enough
A tradeoff between XML simplicity and UML'’s

abstraction benefits
L — 1y T

e Don’t build for tomorrow

o Organizational maturity

L m— — —

eCode generators - XSL transformations
Common standard for C++, Java, .NET developers

L ae——— ——— ————————

e Collective code ownership

——

WHAT DID WE GET?

“Perfection is achieved, not when there is nothing more
to add, but when there is nothing left to take away.”

Antoine de Saint-Exupery

“Simple does not mean simplistic.” James Coplien
R A ———— e A S Sy L

“Good developers add values and remove code”, Thomas Riha

HOW TO PRODUCE THE ARCHITECTURE?

e To build the right product
e To build the product in a right way

HOW TO PRODUCE THE ARCHITECTURE?

: : /)design the model
ANy Ipecuny for the reversed data
e MO €]
reverse some data
T —
adjust, refactor... l produce code generators
for the modeled data

<

definitions files
% Code generators

‘ compare the generated code \
with the original code
e Modelfirst? Thereis a risk that we specify things which will never be used - waste!
e Reverse the existing data first? But we cannot proceed without the model design.
e Forward engineering (code generation) first? But we cannot proceed without the model design.
"Deliver working software frequently”

. E Y ——— e ——

e Do all three activities within the same sprint! Set a spike for each round-trip scenario.

LEAN STARTUP METHODOLOGY (ERIC RIES)

Build-Measure-Learn Loop A °

Build a feature, measure whether it delivers, learn from the results

Minimum Viable Product (MVP)
Version of a new product which allows a team to collect the maximum amount of

validated learning about customers with the least effort.
MVP is a bare-bones product that includes just enough features to allow useful

feedback from early adopters.

“The concept known as "worse is better" holds that in software making it is better
to start with a minimal creation and grow it as needed.”, R. Gabriel (1989)

AGILE AND LEAN MODEL-DRIVEN DEVELOPMENT

e We modeled just what we needed, according to the input from the
definition files. Hence the model was "pulled by the request” and a
"potential waste was not introduced”.

“All businesses have costs. Waste is optional”, Stephen Parry

e \We generalized model only for the repeating artitfacts. We did not put any

effort to model things that appeared just once. We "did not build for
tomorrow”.

e After one spike/round tripping we learnt how to improve things for the next
cycle. "Learn first”

e We could see, early in the project, which parts of the MDD had to be
improved. "Build quality in”, “Improve constantly”

e Consequently, MDD'’s long starting curve was shortened. We produced a
piece of working software in each first sprint. “Working software is a
primary measure of progress”

OUR AGILE OR "GOOD-ENOUGH"” MODEL

L RIY name="RTY_MARKETSERVERATTRIBUTES" value="0179" sdk="yes" secton="Record Types (RTYs)" type="Chid record” nameCS="MarketSenverAltributes”/>

RTY name="RTY_SETTLEMENTPRICE" value="017TA" sdk="yes" section="Record Types (RTYs)" type="Child record” nameCS="SettlementPrice"/>
CRTY name="RTY_DEALID" value="017D" sdk="yes" section="Record Types (RTYs)" type="Child record” nameCS="Dealld"/>
RTY name="RTY_LISTID" value="017TE" sdk="yes" section="Record Types (RTYs)" type="Chid record” nameCS="Listid"/>
RTY name»RTY_CHARGECURVENAME™ valuen"017F" sdkw"yes” sechon"Record Types (RTYs) typen"Chid record” nameCS»"ChargeCurveName™/>
RTY name="RTY_ORDERID" value="0180" sdk="yes" section="Record Types (RTYs)" type="Chid record” nameCS="Orderd"/>
RTY name="RTY_ACCOUNTID" value="0196" sdk="yes" section="Recced Types (RTYs)" type="Child recoed” nameCS="Accountld’/>
RTY name="RTY_REFERENCE" value="0197" sdk="yes" section="Record Types (RTYs)" type="Child record” nameCS="Referance/>
. RTY name="RTY_IMORDERID" value="01AB" sdk="yes" section="Record Types (RTYs)" type="Chikd record” nameCS="IMOrderd"/>
~RTY name="RTY_IMINFOHEADER" value="01AF" sdk="yes" section="Record Types (RTYs)" type="Child record” nameCS="IMInfoHeader"/>
/RTY name="RTY_EMINFOHEADER" value="01B80" sdk="yes" section="Record Types (RTYs)" type="Child record” nameCS="EMinfoHeader"/>
RTY name="RTY_GETORDERATTRIBUTES" value="01B1" type="Child record” sdk="yes" section="Recoed Types (RTYs)" nameCS="GetOrderAttnbutes />
RTY name="RTY_MEMBER" value="01B4" sdk="yes" section="Record Types (RTYs)" type="Child record” nameCS="Member"/>
RTY names RTY_LISTNAME" values"01B5" sdk"yes” sechions"Record Types (RTYs) types"Chid record”™ nameCS"ListName™/>
RTY name="RTY_SEQNORECOVERY" value="01868" sdk="yes" section*"Record Types (RTYs)" type="Child record” nameCS="SeqNoRecovery’/>
RTY name="RTY_ORDERBOOKID" value="01BT" sdk="yes" section="Record Types (RTYs)" type="Child record” nameCS="OrderBookid"/>
RTY name="RTY TICKINTERVAL" value="01B8" sdk="yes" section="Record Types (RTYs)" type="Chid record” nameCS="Tickinterval"/>

Merged PIM and PSM?
“Is it an architectural error?!”

* RTY name="RTY_FREETEXTUSTITEM" value="01B9" sdk="yes" section="Record Types (RTYs)" type="Chikd record” nameC5="FreeTextListiem"/>

RTY name="RTY_FREETEXTFORMAT" value="01BA" sdk="yes" secton="Record Types (RTYs)" type="Chikd record” nameCS="FreeTextFormat"/>
“RTY naw"RTY OELETEORIERO 4alu#-‘0198‘1,pa "Chtld record” sdk="yes" s-cluon ’Rocord T)'pos (RTYs) nameCS- alateCrdedd

RTY na'rc'ﬂTY_DEAL' value="01BF" sdk"ycs' sechon="Record Types (RTYs)" type="Chid record” nameCS»"Deal"/>

RTY name="RTY_ALTERNATIVELISTNAME™ value="01C3" sdk="yes" section="Record Types (RTYs)" type="Child record” nameCS="AltemativelistName"/>
- RTY name="RTY_ORDERBOOKSTATUS" value="01C4" sdk="yes" section="Record Types (RTYs)" type="Chiki record” nameCS="OrderBookStatus"/>
- RTY name="RTY_PRICEDETAIL" value="01C5" sdk="yes" section="Record Types (RTYs)" type="Child record” nameCS="PriceDetal’"/>

CRTY name="RTY_NEWOEAL" value="01C6" sdk="yes" section="Record Types (RTYs)" type="Child record” nameC5="NewDeal />

RTY name="RTY_PARTY" value="01CT" sdk="yes" secton="Record Types (RTYs)" type="Chid record” nameCS="Party"/>

RTY name="RTY_MARKETPRICE" value="01C9" sdk="yes" section="Record Types (RTYs)" type="Chid record” nameCS="MarketPnce"/>

RTY name="RTY_DISCLAIMERTEXT" value="01CA" sdk="yes" section="Record Types (RTYs)" type="Child record” nameCS="DisclamerText"/>

RTY name="RTY_ORDER" value="01C8" sdk="yes" sechon="Record Types (RTYs)" type="Child record” nameCS="Order"/>

RTY name="RTY_ORDERINFO" valuew"01CC" sdkn"yes" section®"Record Types (RTYs)" typen"Child record” nameCSa"Orderinfo’/>

RTY name="RTY_BROKERID" value="01CD" sdk="yes" section="Record Types (RTYs)" type="Chid record” nameCS="Beokerd"/>
« RTY name="RTY MOVEORDERID" value="01CF" tuna="Child recard” sdk="ves" soction="Record Tunes (RTYs)" nameCS="MaveOederdd"/>

Erlc Ries

MVP CONCEPT

"Bugs were all over the place,
extremely ugly looking, and only the
most rudimentary features. While |
used to enjoy showing my family
what I'd built, | remember thinking: I
never want my family to know I've
released this pitiful of a product.

But it allowed us to test the market
and get feedback, which allowed
us to drop certain features that
didn’t resonate with our audience,
and focus on others that our
customers really liked.”

AFTER SEVERAL BUILD-MEASURE-LOOP CYCLES

e When we finished with the reverse engineering we could

release the new architecture and deploy to production.

e As soon as the developers stopped wasting time on the
manual updates in the old architecture and started using the

new architecture, we started receiving a ROI.

* We got a working architecture which creates a business value.
T _ Ly

¥

e We got an ugly but "good-enough” model, which creates a
value. We are constantly improving it, with the concurrent
receival of ROL. ' ' ' '

- B

WHY DID WE SUCCED THE THIRD TIME?

e By accident?

e Third time lucky?

e Because WORSE IS BETTER?

"GOOD-ENOUGH"” SOLUTIONS (Scott Ambler)

"Good enough” solution is a practices-based.

e i e S

"Just barely good-enough” solution, where the fundamental
challenge with “just barely good-enough” is situational and therefore
the most efficient. Hence such solutions usually create a biggest
business value.

Good Enough
\deal Realistic

Value

"GOOD-ENOUGH” SOLUTIONS |

WIIl take time
to dellver

They're
dreaming

- CHEAP

pescquality

~ GOOD ENOUGH

//

'1
>
y

A "HELLO WORLD" PROGRAM

10 PRINT "HELLO WORLD"
20 END

program Hello(input, output)

1

\\\1

2

begin
writeln('Hello World')
end.

~ $include <stdio.h
void main(void)

{

|

N

char *message[] = {"Hello ", "World"};
int i;

for(i = 0; i < 2; #4)
printf("$s", message[i]);
printf("\n");

\\\\.

//’

<

A

//..

\\l)

// #include <icstream.h>

#include <string.h>

class string

{

private:
int size;
char *ptr;

string() : size(0), ptr(new char([l]) (ptx(0] = 0; }
astring(const string &3) : size(s.size)
ptr = new char(size + 1];
strcpy(ptr, s.ptr);
b

~atring()

delete [] ptr;
}

friend ostream &cocperator <<(ostream &, const string &);

string &operator=(const char *);

}:

ostream &operator<<(ostream &stream, const atring &3)

{

return(stream << s.ptr);

}

string &string::operator=(const char *“chrs)

if (this != gchra)

{
delete [] ptr;

size = strlen(chrs);
ptr = new char(size + 1];
strcpy(ptr, chrs);

return(*this);

}

int main()
{

atring str;

str = "Hello World";
cout << str << endl;

retuzrn(0);

T —— & yp——— w—

" WORSE BETTER?”

R. Ga.briel

What do you
think?

